If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4x^2-80x+150=0
a = 4; b = -80; c = +150;
Δ = b2-4ac
Δ = -802-4·4·150
Δ = 4000
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{4000}=\sqrt{400*10}=\sqrt{400}*\sqrt{10}=20\sqrt{10}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-80)-20\sqrt{10}}{2*4}=\frac{80-20\sqrt{10}}{8} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-80)+20\sqrt{10}}{2*4}=\frac{80+20\sqrt{10}}{8} $
| 6x+2=41 | | 10(x-10)=-40 | | 16-3-4x=13 | | 6.400x=24 | | 0.5(x+12)=-24 | | 10n-9=99 | | y=20.000(1.06)^3 | | 4/5(x-5)=3.2 | | 0.8k+13=1 | | 0.5(2x+8)=11 | | 5x+6=128 | | -31=-5x-8 | | 5w-8+2(4w+3)=-3(w+2) | | 8x+11=145 | | 8r=160 | | 5.50+2.25x=3.25+3x | | 25q=700 | | 21b=714 | | 27=s-47 | | 32+b=11 | | 8=16v | | 6a+3=2a-1= | | 5(u+4)=-2(8u-1)+5u | | 1672.50=1068.50+37.75x | | 3(2x+2)=17-2(x-1) | | 140n=180n-360n | | -2(7u+8)-u=3(u-5)-7 | | 332.25=141+4.25x | | 2(6x^2-25)=25 | | 13^3x-2=5 | | 0.5=x*x*x*x*x*x | | x+(x*0.25)=666 |